Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks
نویسندگان
چکیده
In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments. In this study, ChIP/chip datasets are analyzed using the corresponding PWMs for the well-studied TFs; CAUDAL, HUNCHBACK, KNIRPS and KRUPPEL, to determine the distribution of predicted binding sites. All four TFs are critical regulators of gene expression along the anterio-posterior axis in early Drosophila development. For all four TFs, the ChIP peaks contain multiple binding sites that are broadly distributed across the genomic region represented by the peak, regardless of the prediction stringency criteria used. This result suggests that ChIP peak trimming may exclude functional binding sites from subsequent analyses.
منابع مشابه
GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments
GTRD-Gene Transcription Regulation Database (http://gtrd.biouml.org)-is a database of transcription factor binding sites (TFBSs) identified by ChIP-seq experiments for human and mouse. Raw ChIP-seq data were obtained from ENCODE and SRA and uniformly processed: (i) reads were aligned using Bowtie2; (ii) ChIP-seq peaks were called using peak callers MACS, SISSRs, GEM and PICS; (iii) peaks for th...
متن کاملMolecular interactions between HNF4a, FOXA2 and GABP identified at regulatory DNA elements through ChIP-sequencing
Gene expression is regulated by combinations of transcription factors, which can be mapped to regulatory elements on a genome-wide scale using ChIP experiments. In a previous ChIP-chip study of USF1 and USF2 we found evidence also of binding of GABP, FOXA2 and HNF4a within the enriched regions. Here, we have applied ChIP-seq for these transcription factors and identified 3064 peaks of enrichmen...
متن کاملPICS: probabilistic inference for ChIP-seq.
ChIP-seq combines chromatin immunoprecipitation with massively parallel short-read sequencing. While it can profile genome-wide in vivo transcription factor-DNA association with higher sensitivity, specificity, and spatial resolution than ChIP-chip, it poses new challenges for statistical analysis that derive from the complexity of the biological systems characterized and from variability and b...
متن کاملPePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data
MOTIVATION ChIP-Seq is the standard method to identify genome-wide DNA-binding sites for transcription factors (TFs) and histone modifications. There is a growing need to analyze experiments with biological replicates, especially for epigenomic experiments where variation among biological samples can be substantial. However, tools that can perform group comparisons are currently lacking. RESU...
متن کاملLarge-Scale Turnover of Functional Transcription Factor Binding Sites in Drosophila
The gain and loss of functional transcription factor binding sites has been proposed as a major source of evolutionary change in cis-regulatory DNA and gene expression. We have developed an evolutionary model to study binding-site turnover that uses multiple sequence alignments to assess the evolutionary constraint on individual binding sites, and to map gain and loss events along a phylogeneti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 141 شماره
صفحات -
تاریخ انتشار 2016